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Flow of Viscous Fluid Through a Circular Aperture 

J. S. CHONG,* E. B. CHRISTIANSEN, and 
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Synopsis 

The creeping flow of a highly viscous incompressible fluid through a circular aperture 
located in an infinitely wide horizontal plate is analyzed by solving NavierStokes equa- 
tions without inertia terms. Solutions for vertical and radial velocities as well as pres- 
sure have been obtained in terms of integral equations with an undetermined Kernal 
function. This function has been evaluated by assuming several different velocity dis- 
tributions at the aperture, and the corresponding pressure drop for each case has been 
calculated. The results show that the pressure loss for a given flow rate goes through a 
minimum as the assumed velocity profile changes from flat to  parabolic. Based on the 
minimum energy dissipation theorem of Helmholtz, the most appropriate velocity dis- 
tribution is discussed. Experimental data obtained using sharp-edged orifices are com- 
pared with theoretical predictions. 

INTRODUCTION 

The creeping flow of a viscous Newtonian fluid through a thin circular 
aperture is of theoretical as well as practical interest in view of its novel 
application to determine viscosities of highly concentrated suspensions 
without the wall effect.' Furthermore, there is a need to separate the en- 
trance pressure drop associated with viscous energy dissipation from the 
elastic effect for the flow of various polymer melts through cylindrical 
tubes. 

Weissberg2 calculated the end correction for slow viscous flow through a 
long tube based on the minimum energy dissipation theorem. His flow re- 
gions of interest lie in the semi-infinite space outside of the tube inlet as well 
as in the space between the inlet and the midsection of the tube where fluid 
velocity is fully developed. Under this condition he assumes that the rate 
of energy dissipation or the pressure drop is a function only of the vorticity. 
However, this vorticity must satisfy a velocity field governed by the creep- 
ing flow. Unfortunately, the trial stream function he used does not satisfy 
the vorticity equation, eq. (33). 

Furthermore, his calculation shows that the pressure drop is not very sen- 
sitive to the form of the stream function he used. Roscoe3 obtained a rela- 
tionship between pressure drop and flow rate for slow viscous flow through a 
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circular aperture in which stream lines on the high and low pressure sides of 
the aperture are symmetrical. His method is based on the analogy with 
the electrical potential around a grounded, conducting thin plate. How- 
ever, he did not give the details of the method by which the final solution 
was obtained. 

The present work treats the creeping flow of a highly viscous Newtonian 
fluid through a thin aperture located in an infinitely wide plate above which 
the fluid stands and flows downward through the aperture into the atmo- 
sphere. Under this condition we find that the rate of energy dissipation 
cannot be calculated without knowing the velocity field at or above the 
aperture. Although we apply the minimum energy dissipation concept to 
obtain an approximate solution for the pressure drop, basically, the bound- 
ary value problem associated with the creeping flow into an aperture is ill 
defined and an exact solution cannot be obtained. In  the present work, 
several different velocity profiles a t  the aperture are assumed, and the cor- 
responding pressure drop for each case is calculated. The resulting theo- 
retical predictions are compared with experimental data. 

MATHEMATICAL DEVELOPMENT 

We seek a theoretical relationship among viscosity, pressure drop, flow 
rate, and orifice diameter. The boundary value problem to be solved for the 
viscous flow through a sharp-edged orifice involves the Navier-Stokes equa- 
tion without inertia terms as well as the equation of continuity. These 
equations, for an incompressible Newtonian fluid, follow respectively in 
vector notation: 

p v  = VP (1) 

v - v  = 0 (2 )  

These are linear partial differential equations, and a general solution can be 
obtained easily. In  view of the geometry involved in the orifice flow, equa- 
tions are transformed to cylindrical coordinates. Assuming cylindrical 
symmetry, eq. (1) becomes 

where V and W are the radial and vertical velocity components, respec- 
tively, P is the pressure, r is radial distance from center of orifice, and z is 
vertical distance from orifice. Since the fluid is assumed to be highly vis- 
cous, the body force is neglected, and eq. (2) becomes 

l b  bW 
-- (rV) + = 0. 
r br (5) 
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Equation 
(Xr), and 
from zero 

(3) is multiplied by rJ1(Xr), eqs. (4) and (5 )  are multiplied by ~ J o -  
the products are integrated with respect to radial distance, r ,  
to infinity. Thus we have 

Although the integrations are quite involved, it can be shown that the 
above equations can be converted respectively into the following three si- 
multaneous ordinary differential equations : 

1 (g2 - X2> R = -; P* 

(g-X2)2=,z 1 dP* 

dZ 
dz 
- + + R = O  

(9) 

where X is a transform variable and R, 2, and P* are defined as followrs: 

R = J rV(r , z ) J l (~r )dr  
0 

z = LW rW(r,z)Jo(Xr)dr 

P* = lrn rP(r,z)Jo(Xr)dr 

If P* and R are eliminated from eqs. (9), (lo), and ( l l ) ,  the following 
fourth-order differential equation is obtained: 

A general solution of eq. (12) is 
2 = ( A  + BXz)eXz + (C + DXz)e-Xz (13) 

where A ,  B,  C,  and D are constants, but a function of the transform variable 
A. These constants have to be evaluated by using the following boundary 
conditions : 

(a) W(r, m) = 0 
(b) V(r,O) = 0. 
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The boundary condition (a) requires that the constants A(A) and B(X) in 
eq. (13) must be zero. The resulting equation is substituted in eqs. (9), 
(lo), and (11) to obtain R and P* as a function of the vertical distance z 
from the orifice as well as a function of the transform variable A. The 
boundary condition (b) requires that the constants C(X) and D(X) are iden- 
tical. Therefore, the final expressions for 2, R, and P* are: 

2 = D(A)(l + Az)e-hz = (14) 

The vertical and radial velocity components and the pressure can now be ob- 
tained by applying the Hankel inversion theorem4 to eqs. (14)) (15), and 
(16). Hence, we have 

P -  

We note that velocities and pressure are expressed by integral equations 
with an undetermined constant or function D(X). The nature of the con- 
starit must be such that the integral of eq. (17) must be zero in view of the 
vanishing vertical velocity component along the orifice plate and far from 
the orifice. The fluid velocity at the orifice plate must also satisfy the fol- 
lowing condition: 

I t  is obvious from eqs. (17) and (1s) that the velocity profile at or above the 
orifice is a functional of the constant D(A). There is no rigorous way of 
evaluating this constant for the boundary value problem discussed here. 
However, this constant may be evaluated approximately by assuming a 
suitable velocity distribution at or above the orifice plate. Therefore, 
if the velocity distribution at the orifice is assumed, then the pressure dif- 
ference between orifice and far away from the orifice can be calculated from 
eq. (19). Based on the minimum energy dissipation theorem of Helm- 
holtz,S intuitively we would think that the velocity distribution at or above 
the orifice is such that the total pressure drop would tend to be as small as 
possible for a given flow rate. 
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Based on the foregoing argument, we assume that the velocity distribu- 
tion at  the orifice can be described as 

F ( i )  = K[l  - (5)tT 
where K and n are constants. In  what follows we determine the constant 
D(X) for several different values of n, and the resulting pressure drop is cal- 
culated by eq. (19). 

Since the volume 
flow rate is Q, we find K = Q/?ra2. 

For n = 0, the velocity profile at the orifice is flat. 
The vertical velocity at  the orifice is 

W(T,O) = J- hD(X)Jo(XT)dX = -* Q 
0 ?ra2 

By inverse transformation, we obtain the constant 

The pressure difference between the orifice and a point far away from the 
orifice can now be obtained as 

AP = Po - P ,  = 27 - XJ~(XU)JO(XT)CZX. (24) .Ira Lrn 
Equation (24) shows that the pressure is a function of radial distance in 

the orifice. The average at  the orifice is calculated as 

i\p = 47 Q -  lu r lm XJ1(Xa)Jo(Xr)dXdr 
7ra3 

The integration has been evaluated graphically and the resulting equation 
for the pressure becomes 

Q 
a 

D = 3.317 3. 

For n = 1/2 and K = 3Q/2na2, the velocity distribution at  the orifice is 
proportional to one-half power of the fully developed parabolic profile. 
The constant D(h) is 

D(X) = h a 2  ?!!& 1 T [ 1 - (:Y]''* Jo(Xr)dr 

1 cos Xa 
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SubstitutingD(X) into eq. (21), we find the pressure difference is 

cos Xu Jo(hr)dX 1 AP = 11 3Q -31m[- sin Xu - 
?ra Xu 

(27) 1 

It should be noted that for this velocity distribut,ion, the pressure and shear- 
ing stress at  r = a becomes infinite, and the pressure difference for r < a is 

Finally we consider a parabolic velocity profile. For this case n, = 1 and K 
= 2Q/7ra2, and 

XD(X)Jo(Xr)dX = 

D(X) = %Jar  ?ra o [I - (?)'I a Jo(Xr)dr 

- _  - 4Q J2(aX)/X2. 
?ra2 

The pressure difference now becomes 

where K(r /a)  and E(k) are the complete elliptic integrals of the first and see- 
ond kind and are defined respectively by 

K (:) = [l + (i)2 (:)2 + (4.;)' (:)4 + . . .] 

where k is defined by k 2  = (4r/a)/(l + r/a)2.  
ence for this case is 

The average pressure differ- 
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These calculations show that for a given flow rate the pressure drop is 
sensitive to the assumed velocity profile at the orifice. The pressure drop 
goes through a minimum point as the velocity profile at the orifice changes 
from flat to parabolic. The exact minimum point cannot be determined 
analytically. It is of interest to obtain an equation for the stream function 
which is defined by: 

1 a+ V(r,z) = - - - r bz 

This is done by integrating eq. (18) : 

where C(r)  is a functjion of r and may be assumed to be zero. The stream 
function at the orifice where z = 0 is 

+(r,O) = r D(X)JI(Xr)dX. 

It is easy to show that eq. (31) satisfies the following relationship between 
vorticity and stream function 

Lrn 

where w is the vorticit,y and is defined by 

bV bW 
bz dr 

From eqs. (3) and (4) we find that vorticity must satisfy the creeping flow 

w = - - - .  

equation: 

(33) - + - - - - + - = o  
br2 r br r2 h2 

Thus, we may choose an arbitrary stream function which satisfies eq. (321, 
but, the resulting vorticity does not necessarily satisfy eq. (33). 

tvw 1 aw aZW 

APPARATUS 

The sharp-edged orifices used in this work were made of steel, and their 
characteristic dimensions are shown in Table I. One side of the orifice 
plate was machined so as to give a 22-30" tapered edge while the flat side 
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TABLE I 
Characteristic Dimensions of Sharp-Edged Orifices 

Average orifice Bevelled side Thickness of 
Orifice no. diam, cm angle, deg orifice plate, cm 

1 0.2158 21.28 0.338 
2 0.2173 33.47 0.353 
3 0.2918 35.33 0.322 
4 0.3155 33.40 0.320 
5 0.4505 35.09 0.315 
6 0.5174 29.08 0.296 
7 0.4025 30.15 0.315 

was ground to sharpen the orifice edge. The orifice diameter waa measured 
with a microscope, and an average value waa used for the flow rate calcul& 
tion. 

The sharp-edged orifice was mounted concentrically to, and at the bottom 
of a cylindrical fluid vessel with the tapered edge facing inside. (When the 
tapered edge faced outside, during flow the fluid wetted a large portion of 
the edge by forming a meniscus around the aperture. The pressure 
drop was very sensitive to the extent of wetting, and reproducibility of the 
data was poor.) 

The vessel wall was jacketed with cooling water a t  constant tempera- 
ture. The diameter ratio of the vessel to orifices ranged from 8.75 to 23.60. 
The top of the fluid vessel was connected to a constant pressure reservoir, 
a desired pressure was applied to the fluid using a manual pressure regula- 
tor, and the flow rate was measured when steady state was reached. 

EXPERIMENTAL RESULTS AND DISCUSSION 

A standard-viscosity OB Oil and a Dow-Corning #200 fluid were used to 
experimentally determine the orifice constant. The physical properties of 
OB Oil were obtained from the U.S. Bureau of Standards and are given in 
Table 11. The viscosity of D.C. #200 fluid was measured at 25°C by using 

TABLE I1 
Physical Properties of Standard Viscosity Oils 

Viscosity 

Temperature, "C Absolute (poise) Kinematic 

20 348.4 392.8 
25 219.1 247.7 
40 62.33 71.15 

a OB Oil, lot no. 21. 

a tube flow viscometer, and the result is shown in Figure 1. Figure 2 shows 
experimental orifice flow data obtained by using OB Oil at  19" f 0.1OC. 
We see that the data can be correlated well by the following equation: 
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Fig. 1. Tube viscometer data of DC #200 fluid. 

2a (cn) 
Q 0.2158 
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Fig. 2. Orifice flow data of OB oil (lot. #21). 
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where Co is the orifice constant. The figure shows that the constant is inde- 
pendent of the diameter ratio of fluid vessel to orifices. Since the viscosity 
of OB Oil at this temperature is 428.0 poise, the constant is equal to 1.93. 
Figure 3 shows the orifice flow results obtained using the DC #200 fluid at 
25°C. Within the 
experimental error the agreement between data is excellent. 

We find that the orifice constant for this fluid is 1.91. 
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Fig. 3. Orifice flow data of DC #200 fluid. 

We see that the experimentally determined orifice constant is well within 
the limits of the theoretical prediction. Although the velocity distribution 
at the orifice has not been determined experimentally, comparison of the ex- 
perimental constant with the theoretical values indicates it falls somewhere 
between the flat and that which is proportional to the square root of a fully 
developed parabolic profile. However, the effect of the tapered edge on the 
orifice constant cannot be assessed at this time. 

It is of interest to compare eq. (27) with Roscoe's solution.a If we as- 
sume that the flow into the orifice treated in this work is equivalent to one 
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half of the symmetrical orifice flow and the velocity profile at the orifice is 
given by eq. (21) with n = and K = 3Q/2ra2, then the orifice constant) 
for Roscoe’s case should be 3. This is exactly what Roscoe’s equation 
shows. Although the flow system treated by Weissburg2 is different from 
this work, his final result is given here for comparison: 

Q AP < 3.477 - 
a3 (35) 

The empirical relationship between pressure drop and flow rate given by 
eq. (34) suggests that viscosity of highly concentrated suspensions with solid 
loadings of more than 50% by volume can be measured without, the so- 
called wall effect. The viscosities of concentrated suspensions with various 
particle size distributions have been measured using an orifice flow ap- 
paratus, and the results will be published in the near future. 

Notation 
a orifice radius 

C(X), D(X) constants 
A @ ) ,  &A), 

CO orifice constant 
Do tube diameter 
J P  

P pressure 
Q 
r 
W(r,z> vertical velocity component 
V(r,z> radial velocity component 
z vertical distance from orifice 
7 viscosity 
x transform variable 
3. stream function 
w vorticity 

the Thiokol and the Standard Oil (California) Companies. 
financial assistance is expressed. 

Bessel function of order P 

volume flow rate at  orifice 
radial distance from center of orifice 
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